SOUTH LANARKSHIRE

TALL WIND TURBINES: LANDSCAPE CAPACITY, SITING AND DESIGN GUIDANCE

Addendum to Landscape Capacity Study for Wind Energy 2016

IronsideFarrar
8945 Final Draft Sept 2017
Contents

1.0 BACKGROUND
1.1 Existing Capacity Study
1.2 Study Scope

2.0 REVIEW OF LANDSCAPE AND VISUAL ISSUES
2.1 Current Use of Tall Turbines
2.2 Aviation Warning Lighting
2.3 Matters Associated with Size and Scale
2.4 Existing Guidance

3.0 LARGE TURBINES: EFFECTS, SITING AND GUIDANCE
3.1 Introduction
3.2 Horizontal and Vertical Scale
3.3 Aviation Lighting
3.4 Extensions and Siting Near Smaller Turbines
3.5 Repowering

4.0 LOCAL SITING AND DESIGN GUIDANCE
4.1 Plateau Moorland
4.2 Rolling Moorland
4.3 Southern Uplands
4.4 Other Potential Locations
4.5 Single Turbines

Figures

Figure 2.1 Scale and Distance Illustration
Figure 4.1 Location of Plateau Moorland Areas
Figure 4.2 Location of Rolling Moorland Areas
Figure 4.3 Location of Southern Upland Areas
Figure 6.1e Underlying Landscape Capacity for Wind Turbines (120 – <150m)
Figure 6.1f Underlying Landscape Capacity for Wind Turbines (150 – ca. 200m)
1.0 BACKGROUND

Ironside Farrar has been appointed by South Lanarkshire Council (SLC) to update aspects of the recently completed Landscape Capacity Study for Wind Energy Feb 2016 (LCS 2016) to reflect the increasing size of commercial wind turbines being deployed in wind energy developments.

Many developers are reviewing consented (unbuilt) and new wind energy developments in South Lanarkshire following the change in economic circumstances for onshore wind in the UK. In addition, repowering of existing wind farms is becoming more prevalent.

In order to fully assess the impact of such proposals it is essential that the Council’s landscape capacity guidance is up to date and reflects current development trends for taller turbines.

This report therefore updates the elements of the Capacity Study relating to turbine height by assessing the capacity of the landscape to accommodate taller turbines and provides further guidance on local siting and design. It supplements, and should be read in conjunction with, the LCS 2016.

1.1 Existing Capacity Study

The current Landscape Capacity Study was approved in February 2016 and was subject to public consultation alongside the Council’s Statutory Supplementary Guidance for Renewable Energy (adopted March 2016). It is one of a suite of technical reports which support the South Lanarkshire Local Development Plan.

South Lanarkshire’s current capacity study and supplementary guidance is based on 5 turbine size categories:

- 15m to <30m
- 30m to <50m
- 50m to <80m
- 80m to <120m
- 120m+

The largest size category of 120m+ reflects the size of turbines used in many currently operating windfarms and applications. In the current guidance there is no upper size limit to this range. However, turbines significantly taller than 120m (e.g. 150m+) are now increasingly proposed and that these may be qualitatively different, in scale and appearance in the landscape, from turbines of ca.120m size.

1.2 Study Scope

Ironside Farrar has undertaken the following review:

1. A background review of larger turbines; their deployment and potential issues associated with them. This includes review of any relevant published (or obtainable in-draft) guidance.
2. Identifying examples of windfarms in South Lanarkshire and other areas in which turbines of ca.140m or greater size are employed or proposed (operational, consented and applications). This is followed by a review of the main characteristics of the proposals and issues (if any) arising relating to turbine size.

3. Site visits to suitable examples of existing wind energy schemes with larger turbines to examine appearance in the landscape and any issues associated with their scale; especially in proximity to significantly smaller turbines or distinctive landforms or features.

4. Preparation of a report:
 - summarising the issues associated with larger size turbines as determined from the review and site visits.
 - proposing a series of criteria to be considered in applications for turbines 150m or greater height
 - proposing a supplement/amendment to the strategic guidance to reflect an additional size category of greater than 150m.
2.0 REVIEW OF LANDSCAPE AND VISUAL ISSUES

There is a wealth of material relating to wind turbines and windfarms in the landscape, covering the issues of scale, appearance, siting and design guidance. (South Lanarkshire SG Renewable Energy provides a list of guidance and information at Appendix 1). This is found in the form of generic guidance as well as in the LVIA sections of environmental statements.

2.1 Current Use of Tall Turbines

Currently there are no operational onshore windfarms in Britain with turbines of 150m to blade tip or greater height. However, there are several test turbines, singly or in small groups between 175 and 200m in height and several operational windfarms with turbines of 145 to 149.9m in height. There are also some consented schemes with turbines at 150m or taller. A selection of such developments is shown in Table 2.1.

Table 2.1. Existing/Consented Windfarms with Larger Turbines

<table>
<thead>
<tr>
<th>Windfarm</th>
<th>Turbine heights to blade tip</th>
<th>Consented/operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calder Water (SLC)</td>
<td>145m</td>
<td>Operational</td>
</tr>
<tr>
<td>Clyde Extension (SLC)</td>
<td>140m</td>
<td>Operational</td>
</tr>
<tr>
<td>Hunterston (North Ayrshire)</td>
<td>177m, 193.5m</td>
<td>Operational</td>
</tr>
<tr>
<td>Methil (Fife)</td>
<td>195m</td>
<td>Operational</td>
</tr>
<tr>
<td>Middle Muir (SLC)</td>
<td>149.9m and 136m</td>
<td>Under construction</td>
</tr>
<tr>
<td>Muirhall Extension 1 & 2</td>
<td>145m and 147m</td>
<td>Operational</td>
</tr>
</tbody>
</table>

There are several windfarm applications in which turbines of 150m and greater are proposed, with the tallest 177.5m at Windy Standard III in Dumfries & Galloway (see Table 2.2 below).

Table 2.2. Proposed Windfarms with 150m+ Turbines

<table>
<thead>
<tr>
<th>Windfarm</th>
<th>Turbine nos. and heights to blade tip (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lethans (East Ayrshire)</td>
<td>176m, 152m and 136m</td>
</tr>
<tr>
<td>Windy Standard III (Dumfries & Galloway)</td>
<td>177.5m and 125m</td>
</tr>
<tr>
<td>Highlee Hill, Scottish Borders</td>
<td>176m and 150m</td>
</tr>
</tbody>
</table>

There are onshore developments outside the UK in which turbines significantly larger than 150m are operating or proposed. The Estinnes Windpark in Belgium deploys twenty-seven 7.5MW Vestas turbines at 198m height\(^1\). These are currently the largest wind turbines deployed onshore; also used at two other sites in Germany and the Netherlands.

Turbines larger than 200m have been built\(^2\); however most of these are in the developmental stage and have not been deployed in numbers. Furthermore, current intentions are that they will be used offshore.

\(^2\) http://www.windpowermonthly.com/10-biggest-turbines
2.2 **Aviation Warning Lighting**

The requirement for aviation lighting is determined by the Civil Aviation Authority (CAA). Current guidelines require that all structures 150m or greater in height have medium intensity steady red lights mounted\(^3\). The light specification for medium intensity is 2000cd (candela). In some cases, this lighting specification is required for structures below 150m in height, when near aviation ground facilities. Examples include Neilston and Middleton windfarms which both lie ca.12km to the south of Glasgow Airport.

The CAA has recently published specific guidance for wind turbines above 150m\(^4\). In this case the red lights are to be mounted on the top of the nacelle in a position allowing 360\(^0\) visibility, with 3 lower intensity lights (minimum 35cd) mounted on the tower at half nacelle height.

This requirement is the clearest demarcation between turbines of 150m and taller and turbines below 150m in height, with a few exceptions below 150m as described above. Whereas the perception of height and size is a gradually changing scale subject to judgement, the addition of a highly visible light at night time is a notable qualitative change involving a separate area of considerations.

2.3 **Matters Associated with Size and Scale**

There are several key criteria associated with the perception and siting of wind turbines in the landscape, of which the relationship between the size of turbines and the scale of the landscape is a primary consideration. Scale is expressed in both horizontal and vertical dimensions of the landscape itself, but also secondarily in the form of other landscape elements such as trees and houses, often referred to as scale indicators.

Scale in this sense does not refer to a definitive measurement but more to a perception of size, particularly the comparative size between elements. While size can be objectively measured, perceptions of scale are subject to the distance over which objects are seen, and to comparison with other known objects. Two concepts relevant to the perception of scale are:

- **Relative size**, in which the size of an object can be determined by comparison with the size of familiar objects within its visual context.
- **Size constancy**, in which the scale of a familiar object is understood when seen within a certain range of distances from the viewer, because of prior knowledge of its size. Size constancy can also allow distances to be determined.

Horner and McLennan\(^5\) emphasise the importance of visual scale and comparison of objects.

"**Visual scale refers not to the actual dimensions of things, but rather to how small or large something appears to be in relation to its normal size or to the size of other things in its context**"

\(^3\) *Lighting of En-Route Obstacles and Onshore Wind Turbines* DAP Policy April 2010
\(^4\) *Lighting of Onshore Wind Turbine Generators in the UK with a maximum blade tip height at or in excess of 150m Above Ground Level* SARG Policy Statement June 2017
\(^5\) *Designing Windfarms in the Landscape* SNH Post Consultation Workshop Presentation, 2009
They also highlight proportion, the proper or harmonious relation of one part to another or to the whole. A proportioning system establishes a consistent set of visual relationships between the parts of a feature, as well as between the parts and the whole:

“Although these relationships may not be immediately perceived by the casual observer, the visual order they create can be sensed, accepted, or even recognised through a series of repetitive experiences”.

However, perception can also be confused when visual clues do not conform with expectations. It is much more difficult to determine the distance or size of an object when there are no familiar scale references and landforms are simple, giving few clues for assessing distance. At the extreme, there are several simple optical illusions such as the Ebbinghaus Illusion and the Ponzo Illusion (see Fig. 2.1) which use visual clues to confuse assumptions about scale and distance.

![Figure 2.1: In the two images above, the middle circles and the posts are the same size, but the use of visual clues (smaller and larger surrounding circles and perspective lines) makes them look a different size](image)

Taking the above considerations into account; the generally accepted rule is that large wind turbines are more suited to larger scale landscapes with simple, undulating or rounded landforms and patterns. This is because they will be less dominant in these surroundings and there are few or no scale reference objects allowing a perception of their true scale.

However, the matter of proportion and expectation is also increasingly important in this respect, as the height of turbines and the lateral extent of windfarms increasingly approaches the scale of the landforms and areas in or near which they could be located and has the potential to dominate their character or diminish their stature.

2.4 Existing Guidance

Existing generic guidance on strategic location, siting and design of wind turbines and wind energy schemes of all scales is provided by SNH. Further
specific guidance is provided by local authorities in wind energy and landscape capacity studies. This includes South Lanarkshire's LCS 2016.

The relationship between turbine size and landscape scale is consistently a key subject in guidance. This is a matter applicable to all sizes of wind turbine, including those greater than 150m in height.

SNH’s guidance covers the issues determining siting and design and more strategic matters. Paragraph 2.15 of the siting and design guidance refers to turbine size and scale:

‘Choice of turbine size is an integral part of the design process. Identification of the key landscape characteristics, their sensitivity and capacity to accommodate change will inform this. Generally speaking, large wind turbines will appear out of scale and visually dominant in lowland, settled, or smaller-scale landscapes, which are often characterised by the relatively ‘human scale’ of buildings and features. They are best suited to more extensive, upland areas, and set back from more sensitive upland fringes’.

And in paragraph 3.31:

‘Landscape scale and openness are particularly important characteristics in relation to wind turbines because large wind turbines can easily seem to dominate some landscapes. For this reason, landscape scale can dictate the ability of an area to accommodate wind farm development, both horizontally and vertically’

The guidance also covers aviation lighting, describing the requirement for turbines of 150m or greater, stating:

‘…effects are likely to be more significant in areas with less artificial lighting, including remoter rural locations, Wild Land Areas and dark sky sites where the absence of artificial lighting contributes to the feeling of remoteness or the direct appreciation of the night sky. Lit turbines may lessen the contrast between developed and undeveloped areas, e.g. when viewed from nearby settlements’

The SLC capacity study and guidance (LCS 2016) is based on the 14 landscape character types (LCTs) of the local authority. The LCTs are subdivided into one or more landscape character areas (LCAs). A detailed analysis of each type is carried out based on landscape character, visual sensitivity and landscape value; in which several criteria such as scale, landform, visibility, designations and perceptual aspects are assessed to determine overall sensitivity.

Broadly speaking, capacity for wind energy developments of different scales is related to sensitivity, with areas of lower sensitivity usually considered to have a higher capacity. The analysis considers capacity in terms of the size of wind turbines. This is strongly related to scale, landform and landscape pattern.

6 South Lanarkshire Landscape Capacity Study for Wind Energy Feb 2016 Ironside Farrar
7 Siting and Designing Windfarms in the Landscape, v3 Feb 2017, SNH
8 Spatial Planning for Onshore Wind Turbines – natural heritage considerations: Guidance, 2015 SNH
9 South Lanarkshire Landscape Character Assessment Nov 2010 Ironside Farrar
The LCS 2016 indicates the underlying capacity in each LCT for different wind turbine size categories, shown in the form of analysis tables (Table 6.1(a – k)) and capacity maps (Figures 6.1 (a – e)). Guidelines on siting and design of wind energy schemes are provided in the tables and text.

The assessment also considers the local authority area as a whole. Sections 6.4 and 6.5 identify strategic areas in which cumulative development is considered to have reached capacity; areas which are not suitable for wind energy development of any significant scale and areas in which capacity for wind energy development remains.
3.0 LARGE TURBINES: EFFECTS, SITING AND GUIDANCE

3.1 Introduction

This guidance considers the siting of the largest scale of turbines in the landscapes of South Lanarkshire and its immediate surroundings. It should be read in the context of SLC’s existing guidance LCS 2016 and SNH’s siting and design guidance.

Turbine Size Ranges

To allow this matter to be addressed specifically, it is proposed that two new size categories are introduced to the existing scale (Table 3.1 below):

- **120m+ will be replaced by 120m to <150m**: this provides an upper limit to the 120m+ category, but the existing guidance for 120m+ will apply.
- **150m to ca.200m** will be added. In this case updated guidance will apply, although this is set within the overall framework of the existing guidance.

Table 3.1. Existing and Proposed Wind Turbine Size Categories for SLC

<table>
<thead>
<tr>
<th>Existing Size Categories</th>
<th>Proposed Size Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>15m to <30m</td>
<td>15m to <30m</td>
</tr>
<tr>
<td>30m to <50m</td>
<td>30m to <50m</td>
</tr>
<tr>
<td>50m to <80m</td>
<td>50m to <80m</td>
</tr>
<tr>
<td>80m to <120m</td>
<td>80m to <120m</td>
</tr>
<tr>
<td>120m+</td>
<td>120m to <150m</td>
</tr>
<tr>
<td></td>
<td>150m to ca. 200m</td>
</tr>
</tbody>
</table>

The proposed upper size limit of ‘ca.200m’ reflects the current maximum size of turbines deployed onshore in any country. It is expressed as ‘ca.200m’ to reflect the fact that turbines larger than 200m have been developed (currently for offshore use only) and that a maximum of 10% variation on 200m should be considered in this category. Should turbines significantly taller than 200m be developed in future, updating of the guidance will be considered.

Landscape and Visual Considerations

It is unlikely that the largest modern turbines can be accommodated in most locations without contemplating some level of change in character of the landscape. This guidance is therefore considered in terms of (a) the effects on the landscape; and (b) the appropriate levels of landscape change to be accommodated. The basic choices are expressed as follows in section 2.6.2 of the LCS 2016:

- **Landscape Protection**: Maintain existing landscape character.
- **Landscape Accommodation**: Accept a degree of change providing this does not fundamentally alter key landscape characteristics and visual resources.
- **Landscape Change:** Accept large amounts of change that may fundamentally alter key landscape characteristics and visual resources.

The updated guidance seeks to highlight the key issues associated with larger turbines. The following matters are considered to be the most critical:

- **Horizontal and Vertical scale**
- **Aviation Lighting**
- **Extensions and siting near smaller turbines**
- **Replacing smaller turbines with larger turbines, i.e. Repowering**

This chapter (3.0) reviews the landscape and visual issues generically, including the main effects and the potential for mitigation by siting, design or other means.

Chapter 4.0 concludes by identifying areas in South Lanarkshire in which the large turbines could most easily be accommodated and provides guidelines for ensuring the best/most appropriate landscape fit.

3.2 Horizontal and Vertical Scale

As discussed in 2.3 above, the concept of *relative size* argues that the scale of an object is not a matter of absolute size, but how objects are perceived relative to other objects or features in their context. Furthermore, the proportional relationship between the scale of a turbine/windfarm and its landscape setting is an important consideration in how the landscape or view may be perceived.

Large turbines will be best suited to landscape types of the largest scale, with gradual slopes, indistinct landforms, simple patterns and few or no smaller scale elements or features.

An extensive horizontal scale is perhaps the most important consideration: both in terms of absolute area and in the sense of scale engendered by the delineation of landforms or land use patterns such as field boundaries and blocks of trees. An extensive area of land will be more able to accommodate a large wind energy scheme without being dominated and can have ‘strategic depth’ in which larger turbines can be set back from the edge of an area or from a sensitive visual receptor. Large horizontal scale landforms and patterns will help accommodate large turbines by diminishing their apparent scale.

Estinnes Windpark, Belgium. The turbines are 198m tall but difficult to scale accurately due to the large horizontal scale and indistinct landform
A large vertical scale may help to accommodate large turbines by diminishing their apparent scale. Higher landforms in combination with topographic hollows or screening ‘dead ground’ may also be able to fully or partly screen the turbines. However, the landform will need to be considerably greater than the turbine size in order that the turbines do not diminish the perceived stature of the landform\(^\text{10}\).

Flat or gently undulating landscapes without distinctive landforms provide a less ready scale indicator to a turbine than would a distinctive hill or escarpment. Furthermore, it is more difficult to judge distance in such landscapes.

Scale indicators within a landscape, such as houses, trees, roads and electricity lines, can provide a means by which the scale of wind turbines and/or their distance from the viewer can be assessed. Open or uniformly covered landscapes with few such references would be more able to accommodate larger turbines. It is however the case that, once a turbine is more than a certain number of times larger than a familiar scale indicator in the landscape, it becomes difficult to compare the two objects meaningfully. Thus, where there are relatively few houses or trees seen at distance over a relatively flat landscape, they may not prove to be a clear scale indicator.

Hoprigshiels (3x115m) and Ferneylea (2x76m) turbines in Scottish Borders: Scale indicators in the landscape including tree belts and fields allow the relative scales and positions of the turbines to be understood

Overhead electricity transmission lines with lattice towers, typically ca. 25-55m tall, are intermediate in size between houses/trees and commercial wind turbines, and can provide a ready scale reference for turbines. This is especially so if the line passes from a receptor location into the windfarm, providing visual clues through perspective. Consideration should be given to avoiding siting large turbines near electricity lines and vice-versa. Undergrounding of transmission lines associated with schemes should be considered, preferably to a location well beyond the turbines.

\(^{10}\) Para 3.32 of SNH’s current siting and design guidance suggests that turbines should be ‘of minor scale in relation to the other key features of the landscape’.
3.3 Aviation Lighting

The effects of aviation warning lighting for wind turbines is becoming an increasingly frequent consideration as wind turbines increase in size. The assessment of effects, including visual representation\(^{11}\), is a developing area.

Aviation lighting extends the landscape and visual effects of a proposed development into low light periods (i.e. night time and the periods of dawn and dusk and more exceptionally very dull daylight conditions), creating effects overlapping with and additional to those experienced in daylight.

Despite the different landscape baseline and nature of effects in low light, it is possible to define and assess both landscape and visual effects based on the characteristics of the receiving landscape or views in low light (position and character of skylines; amount, type and location of existing artificial lighting etc.), and the details of the aviation lighting (intensity, colour and number of lights, position relative to landform and other lighting etc.).

The nature of any specific baseline landscape or view will of course vary, much as in different periods of the day depending on weather conditions and time of day. Low light period variations relate to the time period and weather, e.g. dawn, dusk or full night; clear or cloudy skies; the presence or absence of moonlight and starlight; weather and visibility conditions. However, the key factor defining many low light landscapes and views is the degree to which they are affected by artificial lighting, and the characteristics and distribution of that lighting.

The potentially negative environmental effects of artificial lighting is a factor widely recognised in a number of ways. This includes the design and positioning of lighting in developments to minimise light spillage and in a wider sense the recognition of the importance of natural light at night time, particularly through the designation of Dark Sky Areas and Parks:

> ‘An IDA International Dark Sky Park (IDSP) is a land possessing an exceptional or distinguished quality of starry nights and a nocturnal environment that is specifically protected for its scientific, natural, educational, cultural heritage, and/or public enjoyment’\(^{12}\)

Experience of existing aviation lighting on windfarms and transmission towers demonstrates that in clear conditions the lights are highly visible on clear nights at distances of 10km or more\(^{13}\). In areas with little or no background lighting the effects may therefore be significant over some distance. Furthermore, in the case of wind turbines, the rotation of blades can cause a notable blinking effect when the blades pass in front of the light and a flickering reflection effect when the light is seen in front of the blades.

It is therefore likely that in rural areas, including the settings for settlements, the type of medium intensity aviation lights required for 150m+ wind turbines would lead to significant landscape and visual effects in low light periods. These effects would be different in nature and additional to those in daylight hours.

\(^{11}\) See paras 174-177 of *Visual Representation of Windfarms – Guidance v2.2*, Feb 2017, SNH

\(^{12}\) International Dark Sky Association website http://darksky.org/idsp/parks/

\(^{13}\) The lights on Craigkelly Transmitter in Fife are clearly visible from central Edinburgh at 15km and Mount Eagle Transmitter on the Black Isle from the A9 at Bogbain south of Inverness at 17km.
The effects should be taken into account in considering a wind energy proposal, recognising that some of the affected locations are specifically designated for their night time skies, are more generally valued for their remoteness from developed locations and artificial light or may provide a dark night-time setting for a settlement.

Craigkelly Transmitter lights seen at ca. 15km above rooftops in central Edinburgh

Potential for mitigation of aviation lighting is relatively limited. The following siting and design measures are possible but would apply in very specific circumstances:

- Use of siting, topography and trees to screen turbines to higher than hub height when seen from sensitive viewpoints.
- If the screening is not possible at the specified turbine height, consider selectively reducing the heights of the turbines that are visible at near hub height – either to below 150m or to a height where the lights would be screened.
- It is understood that light intensity can be reduced where the scheme has horizontal meteorological visibility for more than 5km in all directions\(^\text{14}\) although it is not clear how variable lighting could be operated to reliably respond to these circumstances. While this may reduce more distant effects it is unlikely to make a great deal of difference close to a scheme located in a naturally dark location.
- Radar-activated warning lights will switch on for brief periods, when approaching aircraft are within proximity, and will not be visible for the rest of the time. However, this approach is still under discussion and will require some financial investment in systems. It may also be of more limited value on busy flight paths.

\(^{14}\) *Lighting of Onshore Wind Turbine Generators in the UK with a maximum blade tip height at or in excess of 150m Above Ground Level* SARG Policy Statement June 2017 (item 4g)
3.4 Extensions and Siting Near Smaller Turbines

It is almost inevitable that, as turbine size increases, turbines of 150m+ will be located close to existing turbines that are considerably smaller; either as an extension windfarm or within a more crowded landscape. Erection of large turbines close to smaller turbines can make a development appear uncoordinated or unbalanced, as well as influencing the perception of distances or perspectives. The extent to which this occurs depends on the degree of size difference; the appearance of the turbines; the proximity and position of the turbines to one another; the nature of the landscape context or view and the position of the turbines relative to the viewer.

The size difference between the proposed turbines and other operational turbines in the area is the most obvious consideration. Gross size differences between turbines, such as turbines being twice the height of their neighbour are easily perceived. However, such occurrences are not common. In cases of lesser contrast, the concept of size constancy and many of the other controlling factors cited in 2.3 above can moderate the apparent differences between turbines.

Muirhall Windfarm, South Lanarkshire: The 6 turbines to the right are 126.5m tall. The 5 turbines to the left are 145/147m tall. The size difference is perceptible but not overt in a wide undulating landscape where it is difficult to tell distances.

In respect of appearance, there is relatively little variation between most commercial scale wind turbines. Experience also indicates that when moving around an area, the potential for differences between different scale turbines to be readily apparent is often reduced by variations in topography and landscape features within and around a windfarm site and changes in the relative position of the viewer to the turbines. However, the following specific considerations may help reduce visual disparity and contrast where proposed large turbines are to be located near existing smaller turbines:

- Consistency in appearance is important in reducing the apparent contrast between two sets of turbines of any size. This includes avoiding mixing two and three bladed turbines or turbine models with very obviously different hub, blade or tower designs.
- Consistency in turbine proportions is important. This may include a consistent proportion of rotor diameter to hub height when the two developments are seen together; or using similar rotor diameters on different height towers where only upper parts are likely to be seen.
• Using a lower landform elevation for siting taller turbines will even out blade tip height differences, such that the combined sets of turbines will appear as a more evenly balanced composition when seen from a distance.

• Placing larger turbines further away from key viewpoints than existing turbines may still lead to apparent flattening of perspective and condensing of distance, but these effects together with contrast in scale is much more exaggerated when the larger turbines are placed to the fore.

Windy Standard I and III Windfarms (Photomontage): three sizes of turbine (55m, 125m and 177.5m. Seen from Blackcraig Hill the differences in size are clear

Windy Standard III Windfarm (Photomontage): the closer turbines are 125m and those further away 177.5m. Seen from Cairnsmore of Carsphairn the difference in size is not apparent due to the similar proportions of the turbines and the lower ground elevation of the taller turbines

• Larger windfarms are more able to ‘absorb’ different size turbines due to the differences in vertical scale becoming a secondary consideration to the broad horizontal scale occupied and the greater visual confusion engendered by large numbers of turbines.
Calder Water and Whitelee Windfarms, South Lanarkshire: The more distant turbines are 110m tall. The closer turbines are 145m tall. The size difference is perceptible but not overt due to the sheer number of turbines.

3.5 Repowering

Repowering of existing windfarms that currently have relatively small turbines is becoming a more relevant consideration as the oldest windfarms approach their consented operational lifetime. It is likely that some of these sites will propose to be repowered with turbines of 150m or greater height. In this case, all the generic considerations of scale, lighting and size contrast covered by existing published guidance, the LCS 2016 guidance and this guidance would apply. However, it is worth considering specific situations which may arise where the effects, adverse or beneficial, of repowering with significantly larger turbines can be notable:

- Replacing many small turbines with fewer, larger turbines can present a simpler, less cluttered appearance
- Large turbine blades rotate more slowly than smaller turbine blades, presenting a less busy, less cluttered appearance
- Spacing between larger turbines is greater than between smaller turbines, which also reduces clutter but may mean more area is required to accommodate a windfarm
- Larger turbines will have a wider visibility and will, for most visibility conditions, be more prominent when seen at distance
- Aviation lighting will be required, leading to effects in low light
- Larger turbines require larger scale infrastructure, including access/delivery roads and crane platforms, leading to direct and permanent effects of a greater magnitude. This is particularly the case where steeper ground which would require larger cuttings and embankments to maintain appropriate road gradients and geometry.
4.0 LOCAL SITING AND DESIGN GUIDANCE

Further to the generic considerations in Chapter 3.0, the following guidance considers the areas in South Lanarkshire that would be most able to accommodate 150m – ca.200m turbines.

In the LCS 2016, only 3 out of 14 landscape character types were identified as having underlying capacity for turbines of 120m+ height:\(^{15}\):

- Plateau Moorlands
- Rolling Moorlands
- Southern Uplands

These are also the areas into which 150m – ca.200m turbines are likely to be most comfortably accommodated. None of the other landscape character types were identified as having capacity for turbines taller than the 80 - <120m category. This indicates that, in principle, it would be very unlikely for turbines taller than 150m to be easily accommodated in these areas without potentially unacceptable landscape and visual effects.

The following guidance outlines the key characteristics of each of the three types; analyses the advantages and disadvantages for siting 150m – ca.200m turbines; identifies the most suitable landscape character areas within each type and lists guidelines for siting and accommodating the turbines.

Figures 6.1e and f in this report show areas with underlying capacity for turbines of 120m to <150m and 150m to ca. 200m height. These overlap the sequence of Figures 6.1a – e in the LCS 2016 which show capacity for turbines from 15m to over 120m height. Figure 6.1e in this report replaces 6.1e in the LCS 2016.

Reference should also be made to LCS 2016 Tables 6.1 and 6.2 and figures 6.3 and 6.4 for information on capacity, cumulative effects and guidelines for all landscape character types and areas in South Lanarkshire, including the three described in detail below.

4.1 Plateau Moorland

Description (see Figure 4.1 for location of LCAs)

Plateau Moorland is a large scale, undulating upland landscape covering extensive areas. It lies mainly on the northern and western fringes of South Lanarkshire, extending into neighbouring local authority areas. It comprises large unenclosed areas of moorland, often with extensive areas of commercial forestry plantation. More recently very large scale windfarms have become characteristic over much of this type. Its lower slopes merge predominantly with the Plateau Farmlands.

There are two main areas; the Western Plateau (Clyde and Ayrshire Basin Moorlands) and the Central Plateau. Smaller fragments of Plateau Moorland are scattered across Plateau Farmland areas in the north and further small areas are located in the centre of the local authority area. Plateau Moorland is

\(^{15}\) See Section 6.3, Table 6.1 and Figure 6.1e of the 2016 capacity study
distinguished from the similar Rolling Moorland to the south due to its lower elevation and less dissected nature, with fewer distinguishable hill landforms.

Analysis of landscape

Advantages: large area, wide horizontal scale, elevated with interior set well back from edges, uniform land cover; few obvious scale indicators except for windfarms; limited feeling of wildness; close to settlements with existing lighting from roads, traffic, houses etc.

Disadvantages: few landforms effective for screening - relies on extensive horizontal scale and strategic depth of areas to absorb development; already significantly developed for wind energy.

Landscape Character Areas

Five landscape character areas are identified: (i) Western Plateau: Whitelee Moor/ Calder Water; (ii) Central Plateau: Black Law; (iii) Central Plateau, Forth/ Tarbrax/ West End; (iv) Western Plateau, Broken Cross/ Coalburn; (v) Western Plateau, Red Moss/Middle Muir

Guidelines for 150m-ca.200m Turbines

The most suitable areas would be (i) and (ii). These are by far the largest in extent, particularly when neighbouring local authority areas are taken into account and are identified in the LCS 2016. Other areas of Plateau Moorland are too small to comfortably accommodate this size of turbine without affecting smaller scale more settled adjacent landscape types, particularly Rolling and Plateau Farmland and Upland River Valleys. However, area (v) is located within a wider area of upland landscape character (principally Rolling Moorland).

All the areas in which the turbines could be located already host substantial wind energy developments with turbines between ca.110-147m in height. The addition of larger turbines could therefore often be, or at least perceived as, an extension of an existing scheme; or would be a repowering exercise replacing existing turbines at the end of their commercial or consented life.

To avoid potential domination of smaller neighbouring scale landscapes, larger turbines should be located towards the centre of larger plateau areas where they will be less likely to be close to scale indicators in the surrounding farmland, seen at a greater distance and seen behind existing smaller turbines. Siting larger turbines between sensitive landscape and visual receptors and existing smaller turbines should be avoided where possible, as this will lead to an increased perception of the larger turbine size through exaggerated perspective.

Aviation lighting is likely to have a less adverse effect in areas (i) and (ii), as these areas are closest to extensive urban areas already characterised by artificial lighting.

Repowering of significant areas presents an opportunity to site large turbines in an area which has become characterised by existing wind energy schemes. The replacement of 110-147m turbines by 150-ca.200m turbines may not present a significant change in overall character, provided that effects on
peripheral areas close to more sensitive landscape and visual receptors are carefully managed as described above.

4.2 Rolling Moorland

Description (see Figure 4.2 for location of LCAs)

Rolling Moorland is an upland type that extends across a large part of western South Lanarkshire, being in the Clyde and Ayrshire Basins Moorlands between the Avon valley and the Southern Uplands. This type is similar to the Plateau Moorlands but has a more dissected plateau, with greater elevation and more rolling topography; but with lesser elevation and steepness than the Southern Uplands to the south. Prominent hills include Cairn Table and Hagshaw Hill. This type is currently less developed with windfarms than the Plateau Moorland partly as its topography is more varied. The type extends extensively westwards into East Ayrshire where it is still less developed.

Analysis of Landscape

Advantages: large areas, elevated with interior set well back from edges, uniform land cover, potential for rolling landforms to screen turbines; few obvious scale indicators except for windfarms.

Disadvantages: Some landforms are more prominent on a modest scale; some perceptions of wildness, key viewpoint hills; divided by valleys (some extensively settled); already significantly developed for wind energy; some areas lie within a local landscape designation.

Landscape Character Areas

Two landscape character areas are identified: (i) Hagshaw/ Dungavel (North of Douglas Water); (ii) Crawfordjohn/ Cairn Table (South of Douglas Water).

Guidelines for 150m-ca.200m Turbines

The Rolling Moorlands are slightly less suitable for development of extensive windfarms than the Plateau Moorlands, primarily due to their more distinctive landform, which in some areas can be of a relatively modest scale as well as there being noted hills with panoramic views. However, this varies across the area with the most distinctive landforms, such as Hagshaw Hill and Cairn Table tending to be southwards, closer to the Southern Uplands. These are the areas which would be least able to accommodate the tallest turbines without adverse visual or vertical scale effects; due either to their nature as a viewpoint, having a relatively modest vertical scale above surrounding valley features and/or a distinctive form.

Most of the areas in which the turbines could be most comfortably located either already host substantial wind energy developments, or have similar developments consented. Turbines vary between 55m and 149.9m height. The addition of larger turbines could therefore often be, or at least perceived as, an extension to an operational or consented windfarm, or would be a repowering exercise, replacing existing turbines at the end of their commercial or consented life.
To avoid potential domination of smaller neighbouring scale landscapes, larger turbines should be located towards the centre of Rolling Moorland areas. There they will be more remote from scale indicators in the surrounding valleys, seen at a greater distance behind existing smaller turbines and/or partly screened by rolling landforms. Siting larger turbines between sensitive landscape and visual receptors and existing smaller turbines should be avoided where possible, as this will lead to an increased perception of the larger turbine size through exaggerated perspective.

Aviation warning lighting is likely to have a less adverse effect in area (i), which is closest to settlements and more densely populated farmland and valleys characterised by some artificial lighting. However, this is not to the same extent as Plateau Moorland LCAs (i) and (ii). There may be some opportunity to use topography and, in occasional situations, forestry to screen lighting.

Repowering is a matter more likely to arise soon in this area, which holds some of the oldest wind energy infrastructure. However, given the smaller size of the turbines, the remaining lifetime of existing extensions and the relatively distinctive landforms, some care should be taken in the timing of repowering and the siting and numbers of 150-ca.200m replacement turbines, such that lengthy periods in which there are awkward juxtapositions of small and large turbines are avoided.

4.3 Southern Uplands

Description (see Figure 4.3 for location of LCAs)

Southern Uplands is an upland type located in the south of South Lanarkshire. The type comprises ranges of large scale steep rounded hills separated by deep Upland Glens and the Broad Valley Upland of the Clyde. Eastern areas are extensively affected by forestry, the M74 communications corridor and latterly by extensive windfarm development. Western and southern areas are much less developed and less afforested, having some aspects of wildness in their character, but also with extensive evidence of past mining around Leadhills.

Analysis of Landscape

Advantages: large areas; high landforms; interior set well back from edges; uniform land cover; potential for rolling landforms to screen turbines; few obvious scale indicators except for windfarms in some areas.

Disadvantages: many landforms are steep and/or distinctive; perceptions of wildness; key viewpoint hills; several steep sided smaller scale valleys; extensive areas lie within local landscape designations; some areas already significantly developed for wind energy.

Landscape Character Areas

Three landscape character areas are identified: (i) East of Clyde/ Daer; (ii) Lowther Hills (Around Daer Water); (iii) Lowther Hills (West of Clyde/ Daer)
Guidelines for 150m-ca.200m Turbines

The Southern Uplands are the least suitable of the three LCTs for hosting large turbines due to a combination of distinctive rolling and steep sided conical landforms, scenic value and less settled character. Nevertheless, the LCS 2016 assesses area (i) as having underlying capacity for turbines of 120m+, whereas the other two areas are more sensitive due to their distinctive character and relative lack of development, separating extensively developed areas within South Lanarkshire, East Ayrshire and Dumfries & Galloway.

Most areas in which the large turbines could be most comfortably located either already host substantial wind energy development, or have similar developments consented. Turbines vary between 125m and 140m height. The addition of larger turbines would therefore often be, or appear to be as an extension to an operational or consented windfarm, or as a repowering exercise, replacing existing turbines at the end of their commercial or consented life.

Larger turbines should be located towards the centre of an area, where they will be less likely to be close to scale indicators in the surrounding valleys and glens, potentially screened by the hill landforms and seen at a greater distance behind existing smaller turbines. Siting larger turbines on lower outer slopes or between sensitive landscape and visual receptors and existing smaller turbines should be avoided where possible, as this will lead to an increased perception of the larger turbine size through exaggerated perspective.

Aviation lighting is likely to have significant adverse effects in all of the LCAs, as they are sparsely settled areas characterised by low levels artificial lighting. However, areas close to the M74 corridor are probably the most characterised by lighting, from a combination of motorway traffic, the railway and a string of small settlements and may therefore be slightly less sensitive.

Repowering of significant areas presents an opportunity to site large turbines in an area which has become characterised by existing wind energy schemes. The replacement of 125-140m turbines by 150-ca.200m turbines may not present a significant change in overall character if effects on peripheral areas close to more sensitive landscape and visual receptors are carefully managed, as described above.

4.4 Other Potential Locations

As discussed above, it is considered unlikely that any other landscape character type within South Lanarkshire would be able to comfortably accommodate 150m – ca.200m turbines. Nevertheless, as this is strategic level guidance, applications within areas other than the three upland types assessed above would therefore be considered on a case by case basis. In this circumstance, the characteristics of the proposals and the specific location would be considered against a series of criteria. The most important criteria are likely to be related to scale and the proximity of sensitive receptors, as follows:

- The height of turbines relative to the vertical and horizontal scale of the receiving landscape
- The number of turbines and extent of the proposed scheme relative to the horizontal scale and extent of the receiving landscape
• The type, number and location of scale indicators in the receiving landscape
• The overall character of the receiving landscape type, including such factors as scenic quality and tranquillity
• The extent to which surrounding landscape character areas provide a larger scale context to the location of the proposed scheme (e.g. is the area adjacent to one of the upland types considered in 4.1 - 4.3 above?)
• The position of the proposed scheme relative to the boundaries of the landscape character type/area (e.g. is it located fully within the area or does only part of the scheme overlap the area?)
• Proximity to other wind energy schemes, particularly the type of smaller scale scheme with smaller turbines that may be located in upland fringe or lowland areas
• The potential for closer proximity to sensitive visual receptors such as residential properties and settlements.

Review against these criteria may lead to the conclusion that the proposals are not appropriate to the location; or that modifications to the proposals, such as reduced turbine size or numbers, may allow it to be accommodated without untoward effects.

4.5 Single Turbines

This guidance should also be applied to single turbines of 150m or taller, applying the same criteria as for schemes involving multiple turbines. Nevertheless, it is likely that slightly different considerations may apply, including the following:
• Horizontal extent of the receiving landscape is likely to be of less importance
• As a consequence of a more limited area being required to accommodate a single turbine, proposals are more likely to be located closer to scale indicators and sensitive visual receptors such as residential houses and settlements.

If you need this information in another language or format, phone 0303 123 1015 or email equalities@southlanarkshire.gov.uk
Figure 4.1 Location of Plateau Moorland Areas
Figure 4.2 Location of Rolling Moorland Areas
Figure 4.3 Location of Southern Upland Areas
Legend
- SL&C Boundary
- Study Area 15km buffer
- Scottish Local Authority Boundaries
- Landscape Character Areas

Landscape Capacity (120m to <150m)
- High
- Medium
- Low
- None

Note: Refer to Table 6.1 for more detail on background assessment and capacity for specific turbine sizes.

Figure 6.1e
Underlying Landscape Capacity for Wind Turbines (120m to <150m)
Underlying Landscape Capacity for Wind Turbines (150 - ca. 200m)

Legend:
- SLC Boundary
- Study Area 10km buffer
- Scottish Local Authority Boundaries
- Landscape Character Areas

Landscape Capacity (150 to ca. 200m)
- High
- Medium
- Low
- None

Note: Refer to Table 6.1 for more detail on background assessment and capacity for specific turbine sizes.

Figure 6.1f

This map is reproduced from Ordnance Survey material with the permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office © Crown Copyright 2017. Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings. All 100017966

Addendum: Tall Wind Turbines Capacity and Siting Guidance